Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1H-Pyrrole-2-carboxylic acid

Gui Hong Tang, Dong Dong Li, Gang Huang, Xing Yan Xu and Xiang Chao Zeng*

Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
Correspondence e-mail: xczeng@126.com
Received 27 March 2009; accepted 15 April 2009
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.063 ; w R$ factor $=0.191$; data-to-parameter ratio $=13.6$.

In the title compound, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}_{2}$, the pyrrole ring and its carboxyl substituent are close to coplanar, with a dihedral angle of $11.7(3)^{\circ}$ between the planes. In the crystal structure, adjacent molecules are linked by pairs of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form inversion dimers. Additional $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link these dimers into chains extending along the a axis.

Related literature

For pyrroles sourced from marine organisms, see: Faulkner (2002). For the bioactivity of pyrrole derivatives, see: Banwell et al. (2006); Sosa et al. (2002). For related structures, see: Zeng (2006); Zeng et al. (2007). For graph-set motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}_{2}$
$M_{r}=111.10$
Monoclinic, $C 2 / c$
$a=14.080$ (3) A

$$
\begin{aligned}
& b=5.0364(10) \AA \\
& c=14.613(3) \AA \\
& \beta=98.969(3)^{\circ} \\
& V=1023.6(3) \AA^{3}
\end{aligned}
$$

$Z=8$

Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
$0.42 \times 0.40 \times 0.37 \mathrm{~mm}$

Data collection
Bruker SMART 1K CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.954, T_{\text {max }}=0.959$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
74 parameters
$w R\left(F^{2}\right)=0.191$
H -atom parameters constrained
$S=1.06$
1006 reflections
$\Delta \rho_{\text {max }}=0.74 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.73$ e \AA^{-3}

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	0.88	2.22	$2.951(3)$	141
$\mathrm{O}^{\mathrm{ii}}-\mathrm{H} 2 A \cdots \mathrm{O} 1^{1}$	0.84	2.16	$2.986(3)$	166

Symmetry codes: (i) $-x+\frac{1}{2},-y+\frac{5}{2},-z+1$; (ii) $-x,-y+2,-z+1$.
Data collection: SMART (Bruker,1999); cell refinement: SAINTPlus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We thank the Natural Science Foundation of Guangdong Province, China (grant No. 06300581), for generously supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2604).

References

Banwell, M. G., Hamel, E., Hockless, D. C. R., Verdier-Pinard, P., Willis, A. C. \& Wong, D. J. (2006). Bioorg. Med. Chem. 14, 4627-4638.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Faulkner, D. J. (2002). Nat. Prod. Rep. 18, 1-48.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sosa, A. C. B., Yakushijin, K. \& Horne, D. A. (2002). J. Org. Chem. 67, 44984500.

Zeng, X.-C. (2006). Acta Cryst. E62, o5505-o5507.
Zeng, X.-C., Zeng, J., Li, X. \& Ling, X. (2007). Acta Cryst. E63, o3424.

supplementary materials

Acta Cryst. (2009). E65, o1121 [doi:10.1107/S1600536809014044]

1H-Pyrrole-2-carboxylic acid

G. H. Tang, D. D. Li, G. Huang, X. Y. Xu and X. C. Zeng

Comment

Pyrrole derivatives are well known in many marine organisms (Faulkner, 2002), some show important bioactivities, such as antitumor activity (Banwell et al., 2006) and protein kinase inhibiting activity (Sosa et al., 2002). This is the reason they have attracted our interest. This study is related to our previous structural investigations of methyl 2-(4,5-dibromo-1 H -pyrrole-2-carboxamido)propionate (Zeng et al., 2007) and 3-bromo-1-methyl-6,7-dihydropyrrolo[2,3-c]azepine- 4,8(1H,5H)-dione (Zeng, 2006). In the crystal structure, molecules of the title compound are linked through $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$ hydrogen bonds to form centrosymmetric dimers (Fig. 2) of graph-set motif $R_{2}{ }^{2}(10)$ (Bernstein et al., 1995), which are linked by $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{ii}}$ hydrogen bonds (another kind of centrosymmetric dimers of graph-set motif $R_{2}^{2}(8)$ are formed), generating chains extending to the a axis (also shown in Fig. 2).

Experimental

The commercially available 1 H -pyrrole-2-carboxylic acid was dissolved in the mixture of $\mathrm{EtOH}(80 \%)$ and ethyl acetate (20%). Colorless monoclinic crystals suitable for X-ray analysis were obtained when the solution was exposed to the air at room temperature for about 5 d .

Refinement

All non-H atoms were refined with anisotropic displacement parameters. The H atoms were positioned geometrically [C-H $=0.95 \AA$ for $\mathrm{CH}, \mathrm{O}-\mathrm{H}=0.84 \AA$ for OH , and $\mathrm{N}-\mathrm{H}=0.88 \AA$] and refined using a riding model, with $U_{\text {iso }}=1.2 U_{\text {eq }}\left(1.5 U_{\text {eq }}\right.$ for the methyl group) of the parent atom. In the final difference Fourier map the highest peak $\left(0.74 \mathrm{e}^{-3} \AA^{\text {}}\right.$ is $1.01 \AA$ from O 2 and the deepest hole $\left(-0.73 \mathrm{e}^{-3}\right)$ is $0.61 \AA$ from O 2 .

Figures

Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

supplementary materials

Fig. 2. Crystal packing of (I) showing the chains formed by hydrogen bonds (dashed lines).

1H-Pyrrole-2-carboxylic acid

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}_{2}$
$M_{r}=111.10$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=14.080$ (3) \AA
$b=5.0364(10) \AA$
$c=14.613(3) \AA$
$\beta=98.969(3)^{\circ}$
$V=1023.6(3) \AA^{3}$
$Z=8$

Data collection

Bruker SMART 1K CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=173 \mathrm{~K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.954, T_{\text {max }}=0.959$
2277 measured reflections
$F_{000}=464$
$D_{\mathrm{x}}=1.442 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 480 K
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 1751 reflections
$\theta=2.8-27.0^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Block, colorless
$0.42 \times 0.40 \times 0.37 \mathrm{~mm}$

1006 independent reflections
875 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=26.0^{\circ}$
$\theta_{\text {min }}=2.8^{\circ}$
$h=-17 \rightarrow 13$
$k=-6 \rightarrow 6$
$l=-14 \rightarrow 18$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.1108 P)^{2}+3.3345 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$

1006 reflections
74 parameters
Primary atom site location: structure-invariant direct methods
$\Delta \rho_{\max }=0.74$ e \AA^{-3}
$\Delta \rho_{\min }=-0.73$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O1	$0.12435(12)$	$1.1503(3)$	$0.53422(12)$	$0.0223(5)$
C4	$0.23786(16)$	$0.8483(5)$	$0.61313(15)$	$0.0176(6)$
O2	$0.07382(14)$	$0.7350(4)$	$0.56343(15)$	$0.0373(6)$
H2A	0.0220	0.7923	0.5336	0.056^{*}
N1	$0.31542(14)$	$1.0100(4)$	$0.61094(15)$	$0.0216(6)$
H1A	0.3144	1.1614	0.5808	0.026^{*}
C3	$0.26837(17)$	$0.6325(5)$	$0.66849(17)$	$0.0208(6)$
H3	0.2299	0.4879	0.6828	0.025^{*}
C5	$0.14189(16)$	$0.9228(5)$	$0.56657(15)$	$0.0173(6)$
C2	$0.36767(18)$	$0.6681(5)$	$0.69974(17)$	$0.0245(6)$
H2	0.4085	0.5521	0.7393	0.029^{*}
C1	$0.39405(17)$	$0.9010(6)$	$0.66242(18)$	$0.0251(6)$
H1	0.4570	0.9740	0.6712	0.030^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0198(9)$	$0.0190(10)$	$0.0273(10)$	$-0.0004(7)$	$0.0008(7)$	$0.0048(7)$
C4	$0.0184(12)$	$0.0182(12)$	$0.0167(11)$	$-0.0004(9)$	$0.0039(9)$	$-0.0005(9)$
O2	$0.0298(11)$	$0.0331(12)$	$0.0472(13)$	$-0.0029(9)$	$0.0002(10)$	$0.0044(10)$
N1	$0.0191(10)$	$0.0196(11)$	$0.0253(11)$	$-0.0027(8)$	$0.0013(8)$	$0.0062(8)$
C3	$0.0210(12)$	$0.0198(12)$	$0.0216(12)$	$0.0003(9)$	$0.0035(9)$	$0.0020(9)$
C5	$0.0192(12)$	$0.0164(11)$	$0.0167(11)$	$-0.0002(9)$	$0.0042(9)$	$-0.0008(9)$
C2	$0.0220(13)$	$0.0291(14)$	$0.0215(12)$	$0.0052(10)$	$0.0009(9)$	$0.0038(10)$
C1	$0.0174(12)$	$0.0318(14)$	$0.0256(13)$	$-0.0013(10)$	$0.0019(9)$	$0.0030(11)$

supplementary materials

Geometric parameters $\left({ }_{A},^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 5$	$1.250(3)$	$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	0.8800
$\mathrm{C} 4-\mathrm{N} 1$	$1.367(3)$	$\mathrm{C} 3-\mathrm{C} 2$	$1.413(3)$
$\mathrm{C} 4-\mathrm{C} 3$	$1.383(3)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9500
$\mathrm{C} 4-\mathrm{C} 5$	$1.464(3)$	$\mathrm{C} 2-\mathrm{C} 1$	$1.369(4)$
$\mathrm{O} 2-\mathrm{C} 5$	$1.342(3)$	$\mathrm{C} 2-\mathrm{H} 2$	0.9500
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	0.8400	$\mathrm{C} 1-\mathrm{H} 1$	0.9500
$\mathrm{~N} 1-\mathrm{C} 1$	$1.354(3)$		$122.4(2)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$107.8(2)$	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{O} 2$	$121.6(2)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	$121.3(2)$	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4$	$116.0(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$130.8(2)$	$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 4$	$107.2(2)$
$\mathrm{C} 5-\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	109.5	126.4	
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$109.4(2)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	126.4
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	$108.6(2)$	
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A} 2$	125.7		
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	125.3	$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2$	125.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3-\mathrm{H} 1$			
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	$171.9(2)$	
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$	$106.9(2)$	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 2$	$-12.3(4)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 2$	$-0.3(3)$	
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$-0.9(3)$	
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$0.7(3)$	
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$		
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$			

Hydrogen-bond geometry (\AA, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 1^{\mathrm{i}}$	0.88	2.22	$2.951(3)$	141
$\mathrm{O} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.84	2.16	$2.986(3)$	166

Symmetry codes: (i) $-x+1 / 2,-y+5 / 2,-z+1$; (ii) $-x,-y+2,-z+1$.

supplementary materials

Fig. 1

Fig. 2

